Single-Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid Malignancies with Specific Clinical and Biologic Correlates

Nikesh Kotecha,1,2 Nikki J. Flores,5 Jonathan M. Irish,1,3 Erin F. Simonds,1 Debbie S. Sakai,5 Sophie Archambeault,5 Ernesto Diaz-Flores,5 Marc Coram,4 Kevin M. Shannon,5,6 Garry P. Nolan,1,7,* and Mignon L. Loh5,6,7,*

1Department of Microbiology and Immunology
2Biomedical Informatics Program
3Department of Medicine
4Division of Biostatistics
Stanford University School of Medicine, Stanford, CA 94305, USA
5Department of Pediatrics
6UCSF Comprehensive Cancer Center
University of California, San Francisco, San Francisco, CA 94143, USA
7These authors contributed equally to this work
*Correspondence: gnolan@stanford.edu (G.P.N.), lohm@peds.ucsf.edu (M.L.L.)
DOI 10.1016/j.ccr.2008.08.014

SUMMARY

Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow cytometry, we observed a specific evoked STAT5 signaling signature in a subset of samples from patients suspected of having juvenile myelomonocytic leukemia (JMML), an aggressive MPD with a challenging clinical presentation during active disease. This signature was a specific feature involving JAK-STAT signaling, suggesting a critical role of this pathway in the biological mechanism of this disorder and indicating potential targets for future therapies.

INTRODUCTION

Myeloproliferative disorders (MPDs) are clonal malignancies characterized by overproduction of immature and mature myeloid cells showing organ infiltration. In particular, juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML) are characterized by malignant transformation in the stem cell compartment with clonal proliferation of progeny that variably retain the capacity to differentiate (Arico et al., 1997; Onida et al., 2002). Children suspected of having JMML often present with failure to thrive, fever, infection, splenomegaly, and a high white blood cell count with monocytosis. Current diagnostic criteria are imprecise and consist of major and minor requirements that are in large part based on excluding other conditions (Niemeyer et al., 1997). The major requirements include an absolute monocyte count > 1,000/μl, fewer than 20% bone marrow blasts, and absence of the t(9;22) or BCR-ABL fusion gene. Patients must also meet two of the minor criteria, including an elevated fetal hemoglobin level for age, circulating myeloid precursors, a total white blood cell count > 10,000/μl, and in vitro hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF).

Extensive molecular data implicate genetic lesions that deregulate Ras signaling as key initiating events in JMML, with studies showing that 60% of patients harbor an oncogenic mutation in PTPN11, NRAS, or KRAS while another 15% have clinical

SIGNIFICANCE

Recent advances have enabled simultaneous measurement of cell type and cell signals in primary populations using flow cytometry. This technique allows us to answer the question, “Can we track oncogenic cell populations from diagnosis through disease evolution via signaling?” Doing so in an era of using specific inhibitors against components of key signal transduction pathways will be necessary to assess treatment effects in human patients to further adapt therapies as cancer cells alter their signaling in response to these treatments. This work uses such an approach to follow patients over time and shows that disease status in juvenile myelomonocytic leukemia (JMML)—at diagnosis, remission, relapse, and transformation—is indicated by a subset of cells with an abnormal signaling profile.
Cancer Cell

Signaling-Based Correlates in Myeloid Malignancies

neurofibromatosis type 1 and/or demonstrate loss of the wild-type NF1 allele in their diseased bone marrow (Emanuel, 2004; Flotho et al., 2007). Patients with the myeloproliferative subtype of CMML exhibit NRAS, KRAS, and JAK2 mutations (Levine et al., 2005; Onida et al., 2002). A cellular characteristic of both JMML and CMML is the formation of abnormal numbers of granulocyte-macrophage colony-forming units (CFU-GM) in methylcellulose cultures containing subsaturating concentrations of GM-CSF (Cambier et al., 1997; Emanuel et al., 1991), which has led to suggestions that alterations downstream of the activated GM-CSF receptor collaborate to drive inappropriate cell growth and survival. One important primary signaling event following binding of GM-CSF to the GM-CSF receptor is activation of the JAK–STAT pathway (Paukku and Silvennoinen, 2004). JAK2 transphosphorylates the β common chain of the GM-CSF receptor, which creates docking sites for adaptors and signal relay molecules, resulting in activation of Ras and downstream Ras effectors including ERK and S6 ribosomal protein (see Figure S1 available online) (Irish et al., 2004; Kunz and Ibrahim, 2003; McCubrey et al., 2000; Rane and Reddy, 2002; Shuai and Liu, 2003).

CMML is an adult MPD that is clinically similar to JMML and shares certain genetic features such the frequent presence of RAS mutations (Onida et al., 2002). JAK2 mutations are rare in JMML and only slightly more common in CMML patients (Levine et al., 2005; Steensma et al., 2005; Zecca et al., 2007), whereas PTPN11 mutations are almost nonexistent in CMML (Loh et al., 2005). Both JMML and CMML can progress to M4 or M5 acute myeloid leukemia (AML), which comprise the myelomonocytic (M4) and monocytic (M5) subtypes (Arico et al., 1997). Furthermore, somatic NRAS, KRAS, and PTPN11 mutations occur frequently in the M4 and M5 subtypes of AML (Bacher et al., 2006; Loh et al., 2004).

Currently, it takes up to 3–4 weeks to confirm a suspected diagnosis of JMML with a CFU-GM assay. As early allogeneic hematopoietic stem cell transplant (HSCT) is the only potentially curative therapy for JMML (Locatelli et al., 2005), it is important to quickly and accurately diagnose these patients in order to deliver appropriate therapy in a timely fashion. In addition, monitoring disease burden during treatment is challenging in patients with JMML due to imprecise clinical definitions of response. Current allele-specific PCR methodologies to detect minimal residual disease are only applicable to approximately 60% of patients (Archambeaut et al., 2008). Importantly, because JMML and CMML exhibit considerable cellular heterogeneity, it has been difficult to elucidate the biologic features of cells that contribute to the cancer phenotype in vivo and of precursor populations that might carry genetic lesions predisposing cells to an oncogenic fate.

Assays for identifying therapeutic agents and assessing efficacy in these patients based on the biochemical consequences of lesions in the GM-CSF and Ras signaling networks are few. Recent advances in flow cytometry, however, have made it possible to simultaneously measure cell type and aberrant cell signals (Irish et al., 2006) arising as a consequence of these lesions. We used this approach to profile signaling at the single-cell level (Irish et al., 2004; Van Meter et al., 2007), including molecules downstream of the GM-CSF receptor and molecules closely associated with Ras signaling, for the presence of primary JMML cells with altered signaling behavior that correlate with disease physiology. Our cohort of 52 samples included patients diagnosed with JMML, healthy individuals, infants with other MPDs, and children initially suspected of having JMML who were subsequently diagnosed with other disorders.

RESULTS

A Flow Cytometry-Based Signaling Assay Can Be Used to Measure GM-CSF Hypersensitivity

We used phosphospecific flow cytometry (Irish et al., 2004, 2006) after exposure to increasing concentrations of GM-CSF to interrogate evoked signaling responses in JMML cells. In a first test of GM-CSF-induced phosphorylation of STAT5, we observed the dose-dependent appearance of a population of cells in a JMML bone marrow sample compared to normal healthy bone marrow (Figure 1A). This leukemia was also assessed via the traditional methylcellulose assay and exhibited hypersensitive colony formation (defined as clusters of >50 cells) at increasing concentrations of GM-CSF (Figures 1C and 1D), as described previously (Emanuel et al., 1991).

We then investigated 11 additional JMML samples at diagnosis and compared these leukemias to normal samples (n = 8), other childhood MPDs (these cases included 8 patients with Noonan syndrome/MPD [NS/MPD] or Down’s syndrome with transient myeloproliferative disorders [DS/TMD]), and 4 children with an initial clinical suspicion of JMML who were subsequently found to have another diagnosis. We observed an induced phosphorylated STAT5 (p-STAT5) population in the majority of JMML samples that were exposed to low levels of GM-CSF, but not in the other samples interrogated. The data were quantified as a relative percentage of p-STAT5-responsive cells as outlined in the Experimental Procedures (Figure 1B).

p-STAT5 Response to Low Doses of GM-CSF Indicates JMML Status

The combination of CD38 and p-STAT5 best stratified the GM-CSF-hyperresponsive population, which was measurable in both peripheral blood and bone marrow samples. Representative samples from the patient cohort are shown in Figure 2A. The signature was present in both fresh and previously frozen primary samples (details for each sample are provided in Table S1).

p-STAT5 Signaling Cells in JMML Samples Are of Myeloid Origin and Require JAK2 Activity

Immunophenotyping revealed that the p-STAT5-responsive cells were of myeloid origin (CD33+CD14+), CD34−, and CD38+ (Figure S2). The involvement of JAK-specific activation of the p-STAT5 response in these cells was first confirmed by exposing primary samples to a chemical JAK2 inhibitor for 30 min before GM-CSF stimulation at 10 ng/ml for 15 min (Figure S3). Similarly, exposing JMML cells to a 5 μM concentration of the oral JAK2 inhibitor XL019 (Exelixis) inhibited STAT5 and ERK phosphorylation in response to a saturating concentration of GM-CSF, whereas the MEK inhibitor CI-1040 (Pfizer) failed to alter the p-STAT5 response despite inhibiting p-ERK (Figure 2B).
p-STAT5 Response Can Be Summarized using the 95th Percentile

To visualize the data set from all patients studied, we calculated ratios of the 95th percentile of p-STAT5 activity to the unstimulated sample and displayed the results in heat map format (see Experimental Procedures). Eleven of twelve JMML samples showed highly sensitive activation of p-STAT5 (p-STAT5), Primary cells from JMML and normal bone marrow (BM) were stimulated at varying concentrations of GM-CSF. The JMML samples show a subset of cells responding via p-STAT5 at low concentrations of GM-CSF. (A) Increase in p-STAT5 response to GM-CSF concentration was quantified as a function of maximal response. A higher percentage of p-STAT5+ cells were present at 0.16 and 0.32 ng/ml GM-CSF concentrations in JMML samples (n = 12) than in healthy samples (n = 8), samples with Noonan syndrome or Down’s syndrome-related transient myeloproliferative disorders (“Other MPD,” n = 8), or non-MPD samples that were initially suspected to be JMML (n = 4).

(C) Colonies formed in a JMML sample and a normal sample at increasing doses of GM-CSF. Samples shown are the same ones measured using phosphospecific flow cytometry in (A).

(D) Colony formation from JMML patients (n = 10) was quantified as a function of maximum colony growth, plotted over varying concentrations of GM-CSF and compared against growth from healthy samples (n = 6).

Error bars in (B) and (D) represent standard error of the mean (SEM).

p-STAT5 Response to Low Doses of GM-CSF Is Detectable in CMML and M4/M5 AML

We also analyzed evoked p-STAT5 responses in CMML and AML and found that 5 of 5 samples from adults with CMML and 4 of 8 samples from patients with AML showed a hypersensitive population (Figure 3C; Figures S8 and S9). In AML,
the presence of an aberrant p-STAT5 response to subtherapeutic concentrations of GM-CSF correlated with the French-American-British M4/M5 morphologic subtype (n = 4) and was not detected in non-M4/M5 AML samples (n = 4). The eight AML samples were assessed for lesions in \textit{PTPN11}, \textit{NRAS}, \textit{KRAS}, and \textit{FLT3}. The genotype data were less predictive of the signaling phenotype than the cell type, as two patients with non-M4/M5 AML who were found to harbor an \textit{FLT3} internal tandem duplication (ITD) and one patient with an \textit{NRAS} mutation did not exhibit the p-STAT5 signature. Further information is given in Tables S1 and S2.

DISCUSSION

Based on the presence of Ras pathway mutations in JMML (reviewed in Emanuel, 2004; Flotho et al., 2007), the characteristic GM-CSF hypersensitivity of myeloid progenitors isolated from JMML patients in methylcellulose culture, and compelling data from \textit{Kras}, \textit{Nf1}, and \textit{Ptpn11} mutant mice linking genetic lesions found in JMML to MPD and GM-CSF hypersensitivity (Araki et al., 2004; Braun et al., 2004; Chan et al., 2004; Le et al., 2004; Mohi et al., 2005), we used phosphospecific flow cytometry to assay p-ERK and p-S6 levels in patient samples. The finding that a small proportion of CD33+CD14+CD38lo cells exhibited hyperphosphorylation of p-STAT5 in response to subsaturating concentrations of GM-CSF was unexpected. Whereas studies of JMML patient samples and mice lacking either \textit{Gmcsf} or the b common chain of the murine GM-CSF receptor (Birnbaum et al., 2000; Kim et al., 2007) provide strong evidence that an aberrant response to GM-CSF is integral to the pathogenesis of JMML, the role of STAT5 has not been explored.

Our data raise the intriguing possibility that Ras-GTP is upstream of JAK2-STAT5 activation in the aberrant response of JMML cells to GM-CSF. Ras pathway mutations might potentiate JAK-STAT signaling by stabilizing or directly activating the
GM-CSF receptor or its associated signaling molecules. The SHP-2 phosphatase, which is deregulated by JMML-associated mutations, is recruited to phosphorylated tyrosine residues on the activated β subunit of the GM-CSF receptor and is essential for efficient STAT5 activation in myeloid cells that are stimulated with interleukin-3 (Yu et al., 2003). Ras localizes to activated receptor complexes, and elevated levels of Ras-GTP might in turn increase the degree and/or duration of JAK2 kinase activity.

We considered the possibility that hyperactivation of Ras/Raf/MEK/ERK signaling in JMML cells might overwhelm a negative regulatory mechanism normally suppressing GM-CSF-induced JAK-STAT signaling. If so, inhibitors of this effector pathway would be expected to interfere with the hypersensitive response of STAT5 to GM-CSF. However, exposing primary JMML cells to CI-1040 failed to alter the p-STAT5 response despite inhibiting p-ERK. As a number of reports have shown that STAT5 is essential for establishing murine MPDs, including Bcr-Abl-positive chronic myelogenous leukemia (CML) and CMML (Ilaria and Van Etten, 1996; Paukku and Silvennoinen, 2004; Van Etten, 2004), understanding the biochemical mechanism underlying elevated p-STAT5 levels in myeloid malignancies with mutations in Ras signaling genes has therapeutic implications.

We also observed discrepancies between p-STAT5 activation in response to low concentrations of GM-CSF and a hypersensitive pattern of CFU-GM colony growth in three types of patients. This is perhaps not unexpected, as the CFU-GM assay interrogates a population of cultured myeloid progenitors that form colonies after 2 weeks, whereas phosphospecific flow cytometry measures a specific biochemical response of a more mature monocytoid cell population to a burst of GM-CSF. It is also important to recall that a hypersensitive pattern of CFU-GM colony growth in methylcellulose is neither necessary nor sufficient to establish a diagnosis of JMML. With these caveats in mind, the rare patients who showed differences between the two assays raise interesting questions that have implications for diagnosis and disease management.

Infants with NS/MPD are an interesting group. Whereas myeloid progenitors from these patients display hypersensitivity to GM-CSF in CFU-GM assays, we did not detect the p-STAT5 signature in our phosphoflow assay. Importantly, it is now recognized that, like the transient MPD seen in neonates with DS, the MPD that occurs in infants with NS usually resolves without treatment (Bader-Meunier et al., 1997; Kratz et al., 2005). Current management of these patients involves watchful waiting.
NRASG13D exhibit the phosphoflow signature. Molecular analysis revealed out treatment. When we evaluated this patient at 2 years of age, met diagnostic criteria for JMML early in life but improved with aggressive clinical course. Importantly, our analysis of the patient with an mutation who showed spontaneous regression further suggests that a normal phosphoflow signature may show this signaling abnormality. Although these data need to be prospectively validated in a larger cohort study, they suggest that the KRASG12D mutation, which is phenotypically aggressive in murine models (Braun et al., 2004; Chan et al., 2004), is less dependent upon JAK2-STAT5 signaling than other Ras pathway mutations. Interestingly, phosphosignaling analysis of c-kit+/lineage- cells from KrasG12D mice with MPD did not reveal abnormal STAT5 activation by GM-CSF (data not shown; Van Meter et al., 2007). Our data therefore raise the intriguing possibility that myeloid malignancies with mutations in KRAS show differential activation of p-STAT5 (and perhaps other signaling molecules) compared to cells that express oncogenic NRAS or PTPN11.

A recent publication of World Health Organization 2008 classification guidelines (Tefferi et al., 2007; Tefferi and Vardiman, 2008) suggests diagnostic approaches to combine molecular pathogenesis along with histology for both classic and atypical MPDs. Discoveries of somatic mutations in Ras signaling molecules have improved diagnostic capabilities for JMML but are still not universally applicable. In addition, following patients on therapy remains challenging in the absence of tractable markers. Our data imply that advances in proteomic and single-cell flow cytometry technologies will add to the genetic mapping of these disorders, allow tracking of rare cell populations that would be difficult to observe in bulk assay approaches (RNA expression or mass spectrometry), and allow us to measure specific activity at the protein level. We have demonstrated the diagnostic value of such information in JMML and CMMML and anticipate that further phosphoflow cytometry-based assays will allow for direct measurements of the key signaling events required for disease maintenance. Finally, the results suggest that JMML, CMMML, and M4/M5 AML are related entities in which hyperactive Ras and aberrant JAK2-STAT5 signaling are early or initiating events (Braun et al., 2004). As such, M4/M5 AML might be distinct from without aggressive treatment. Further studies of additional patients will be necessary to confirm this hypothesis.

The only case in our group with aggressive JMML who did not exhibit the characteristic GM-CSF/p-STAT5 phosphoflow signature harbored a KRASG12D mutation. In recent studies of additional cases, we have confirmed that the vast majority of children meeting the clinical criteria for JMML exhibit aberrant p-STAT5 activation in response to GM-CSF, with the exception of a second patient with a KRASG12D mutation who did not show this signaling abnormality. Although these data need to be prospectively validated in a larger cohort study, they suggest that the KRASG12D mutation, which is phenotypically aggressive in murine models (Braun et al., 2004; Chan et al., 2004), is less dependent upon JAK2-STAT5 signaling than other Ras pathway mutations. Interestingly, phosphosignaling analysis of c-kit+/lineage- cells from KrasG12D mice with MPD did not reveal abnormal STAT5 activation by GM-CSF (data not shown; Van Meter et al., 2007). Our data therefore raise the intriguing possibility that myeloid malignancies with mutations in KRAS show differential activation of p-STAT5 (and perhaps other signaling molecules) compared to cells that express oncogenic NRAS or PTPN11.
other subtypes of AML, in which aberrant transcription factor fusions such as PML-RARA and AML1-ETO likely represent primary leukemogenic events (Gilliland and Griffin, 2002). This has important therapeutic implications, as M4/M5 AML might be highly dependent on Ras and JAK2-STAT5 signaling and therefore sensitive to inhibitors of these pathways. Revealing cell subpopulations associated with disease opens additional avenues for measuring minimal residual disease, assessing the biochemical effects of targeted therapies at the single-cell level, and understanding drug action and mechanisms in diseases of heterogeneous origins and manifestations in diverse patient populations.

EXPERIMENTAL PROCEDURES

Sample Collection
Fresh bone marrow or peripheral blood samples were obtained from children suspected of having JMML or another MPD related to a congenital syndrome, including NS or DS. In addition, the following hematopoietic tissues were analyzed in order to demonstrate the specificity of the JMML phosphophoprotein signature: (1) archived frozen bone marrow products from healthy sibling donors for hematopoietic stem cell transplants, (2) normal bone marrow taken from children suspected of having a metastatic solid tumor, (3) diagnostic bone marrow or pheresis samples from children or adults with AML, and (4) archived bone marrow or peripheral blood samples from adult patients with CMML. All samples were obtained with informed consent. This study was approved by the UCSF Committee on Human Research. Samples were collected in sodium heparin, and mononuclear cells were isolated according to standard methods.

Frozen samples were cryopreserved in 90% FBS/10% DMSO. Table S1 indicates fresh or frozen status of samples used for phosphoflow analysis; however, all colony assays were performed only using fresh material. Table S2 lists cytogenetic information about the AML samples.

Genotyping
All patients referred for workup of a JMML diagnosis were genotyped for PTPN11 exons 3 and 13, NRAS exons 1 and 2, and KRAS exons 1 and 2 according to previously published methodologies (Kalra et al., 1994; Loh et al., 2004; Meschini et al., 2003). Genomic DNA was prepared using Puregene reagents (QIAGEN). Data were also collected for family history of and World Health Organization criteria for neurofibromatosis type 1. The eight patients were suspected of having JMML or another MPD related to a congenital syndrome, (2) normal bone marrow taken from children suspected of having a metastatic solid tumor, (3) diagnostic bone marrow or pheresis samples from children or adults with AML, and (4) archived bone marrow or peripheral blood samples from adult patients with CMML.

CFU-GM Assay
Mononuclear cells were isolated from fresh bone marrow samples and resuspended in Iscove’s Modified Dulbecco’s Medium (IMDM) + 2% FBS. Cells were suspended at a concentration of 200,000 cells/ml. 15 μl of the cell suspension was added to a tube with the following: 1.2 ml MethoCult H4230 methylcellulose (Stem Cell Technologies, Cat. 04230), 15 μl of 100X penicillin/streptomycin, 30.8 μl of human GM-CSF titration (PeproTech, Cat. 300-03), diluted in water and IMDM to complete the tube volume to 1.54 ml. The solution was vortexed for 15 s and rested for 15 min. 1 ml was plated into a 35 x 10 mm Petri dish (BD Falcon, Cat. 351008) placed into a 150 x 15 mm Petri dish (BD Falcon, Cat. 351058) with another dish containing sterile water, and placed into an incubator at 37 °C, 5% CO2. After 14 days, plates were removed from the incubator, and colonies (clusters of 50 cells or more) were counted under a microscope at 40X magnification. Data are presented in Table S1. Hyperpersensitive growth (+2) corresponds to ~50% of maximal growth, whereas hypersensitive growth (+3) corresponds to maximal growth.

Cytokine Stimulation and Intracellular Phosphoprotein Analysis Using Flow Cytometry
Reagents used for flow cytometry included 16% paraformaldehyde (EM grade, Electron Microscopy Sciences, Cat. 15710), methanol (Electron Microscopy Sciences, Cat. 18510), StemSpan H3000 (Stem Cell Technologies, Cat. 09800), and FACs rehydration/staining buffer (HBSS plus 4% FBS). Human GM-CSF (Peprotech, Cat. 300-03), PMA (Sigma Technologies, Cat. P8139), and ionomycin (Sigma Technologies, Cat. I0634) were used to stimulate cells at the concentrations indicated in the text. A chemical JAK2 inhibitor (Calbiochem, Cat. 420099), the oral JAK2 inhibitor XL019 (Exelixis), and the oral MEK inhibitor CI-1040 (Pfizer) were used as described. Antibodies used for phosphoprotein detection were p-STAT5 Alexa 647 (BD Biosciences, Cat. 612599, 10 μl per sample), CD34-Pacific blue (BD Biosciences, Cat. 558117, 5 μl per sample), and CD11b-Pacific blue (BD Biosciences, Cat. 558131, 5 μl per sample). Primary antibody against p-ERK (p-p44/42 MAPK) was from Cell Signalling (Cat. 9101, used at 1:100). FITC-labeled anti-rabbit IgG secondary antibody was from Jackson ImmunoResearch (Cat. 711-096-152, used at 1:400). Primary antibody against p-S6 was from Cell Signalling (Cat. 4856, used at 1:50). FITC-labeled anti-rabbit IgG secondary antibody was from Jackson ImmunoResearch (Cat. 711-096-152, used at 1:400).

Freshly isolated or defrosted mononuclear cells were suspended in prewarmed StemSpan H3000 at a concentration of 1–2 million cells/ml and rested at 37°C for 1 hr. The monocytic cell line U937, which harbors a PTPN11 exon 3 mutation (178G→C, G60FR), was used in each assay as a positive control.

Cells were transferred as 1 ml aliquots into flow cytometry test tubes (BD Biosciences, Falcon 2052) and stimulated with various concentrations of human GM-CSF (Peprotech, Cat. 300-03) for 15 min. Cells were fixed by adding 100 μl of 16% paraformaldehyde (PFA, Electron Microscopy Sciences) at room temperature for 10 min. Cells were washed (centrifugation at 1800 rpm for 5 min) twice with phosphate-buffered saline (PBS) and permeabilized by resuspension in 2 ml ice-cold 5% methanol for 10 min. Cells were stored at −20 °C before staining for flow cytometry.

PFA-fixed, methanol-permeabilized cells were rehydrated by adding 2 ml PBS and washed (centrifugation at 2500 rpm for 5 min) twice. Cells were resuspended in 500 μl FACS buffer (HBSS containing 4% FBS, HyClone) and incubated at 4 °C for 2 hr.

Unconjugated primary antibodies were added at optimized concentrations (p-ERK 1:100 or p-S6 1:50) and incubated at room temperature for 45 min. Samples were washed (centrifugation at 2500 rpm for 5 min) once with FACS buffer. Samples were stained in 100 μl final reaction volumes, using PBS supplemented with 0.5% bovine serum albumin (Sigma, Cat. A2153) as a diluent. Secondary and directly conjugated antibodies were added at optimized concentrations and incubated in the dark at room temperature for 30 min. Samples were washed (centrifugation at 2500 rpm for 5 min) once with PBS and analyzed on an LSR II flow cytometer (BD Biosciences) equipped with 433 nm and 635 nm lasers.

Data Collection and Analysis
Data were collected using DIVA software (BD Biosciences) and analyzed using Cytobank (http://www.cytobank.org/), an open-source flow cytometry storage and analysis application developed in the Nolan and Levy laboratories at Stanford University. Samples that showed a p-ERK response to PMA were deemed viable and used for analysis.

In Figure 1B, the percent of p-STAT5-responsive cells was determined by drawing a gate using SSC and p-STAT5 to identify the percent of p-STAT5+ cells and scaling the response such that the maximum percent of p-STAT5+ cells was equivalent to 100 and the percent of p-STAT5+ cells at unstimulated equivalent to 0.

For Figure 3 and Figures S6 and S7, the normalized p-STAT5 (p-ERK or p-S6) response was calculated by transforming the raw data using the inverse hyperbolic sine, part of the biexponential class of functions used for digital flow cytometry data (Parks et al., 2006), and calculating a change in the 95th percentile of p-STAT5 response between a GM-CSF-stimulated sample and its unstimulated/basal state. The algorithm is outlined as follows:

For each patient, stain and collect samples stimulated with GM-CSF at the following concentrations: unstimulated, 0.04 ng/ml, 0.16 ng/ml, 0.32 ng/ml, 2 ng/ml, and 10 ng/ml.
a. For each sample:
 i. Transform the raw data: sinh^{-1}(raw data/150)
 ii. Identify live cells
 iii. Calculate the 95th percentile of p-STAT5 in the transformed space
 iv. Subtract this value from the 95th percentile of p-STAT5 of the unstimulated GM-CSF sample.

b. For each patient:
 i. Calculate the range of p-STAT5 response to GM-CSF: max 95th percentile p-STAT5 difference – min 95th percentile p-STAT5 difference
 ii. Ignore patient if range of response is < 0.05
 iii. Normalize the change in p-STAT5 such that the unstimulated sample is equal to 0 and the max difference is equal to 100: (difference in p-STAT5/range of response) × 100.

SUPPLEMENTAL DATA

The Supplemental Data include nine figures and two tables and can be found with this article online at http://www.cancer.cell.com/cgi/content/full/14/4/335/DC1/.

ACKNOWLEDGMENTS

We also like to acknowledge investigators at the M.D. Anderson Cancer Center who provided samples from CMML patients, D. Clary from Exelixis for supplying the XL019 compound, and J. Leopold from Pfizer for supplying the CI-1040 compound.

This work was supported by NIH grants ROI K22 CA113557 (M.L.L), U54 CA119367 (G.P.N.), P30 CA82103 (N.J.F. and M.L.L.), N01 HV28183 (N.K. and G.P.N.), P01 CA34233 (N.K. and G.P.N.), and P01 CA108631 (D.S.S., K.M.S., and M.L.L.); Leukemia & Lymphoma Society grants H1096 (G.P.N.), 2157-08 (M.L.L.), and 7019-04 (K.M.S.); the V Foundation for Cancer Research; and the Frank A. Campini Foundation (K.M.S. and M.L.L.). M.L.L. is a Clinical Scholar of the Leukemia & Lymphoma Society. J.M.I. is a Fellow of the Leukemia & Lymphoma Society. K.M.S., and M.L.L.); Leukemia & Lymphoma Society grants LLS 7017-06 (G.P.N.), P01 CA34233 (N.K. and G.P.N.), and PO1 CA108631 (D.S.S., K.M.S., and M.L.L.).

REFERENCES

